ÉTUDES ET RÉALISATIONS ÉLECTRONIQUES / INSTRUMENTATIONS / AUTOMATISME

Route de Brindas – Parc d'Activité d'Arbora – N°2 69510 - Soucieu en Jarrest FRANCE

Tél. 04 72 31 31 30 – Fax. 04 72 31 31 31 Tel. Intern. +33 4 72 31 31 30 – Fax. Intern. +33 4 72 31 31 31

Ardetem&ZPAS Sp. z o.o. ul. Słupiecka 14 57-402 Nowa Ruda tel./fax 74 872-47-06, 74 872-74-67 e-mail: ardetem@ardetem.com.pl www.ardetem.com.pl

C 06/20 Dane w tej dokumentacji mogą być zmienione bez wcześniejszego powiadomienia. Т ARDETEM - TPL IN/66

ANALIZATOR SIECI ELEKTRYCZNYCH

PECA 21

SPIS TREŚCI
Deklaracja zgodności UEstr.2
Ogólne warunki gwarancjistr.3
1. Informacje ogólnestr.4
2. Wyglądstr.4
3. Charakterystyka technicznastr.5
4. Podłączeniestr.7
5. Programowaniestr.13
6. Lista informacji o błędachstr.39
7. Adresowanie Modbusstr.39

DEKLARACJA ZGODNOŚCI UE	
-------------------------	--

Producent : ARDETEM-SFERE Route de Brindas Parc d'activité d'Arbora n°2 69510 Soucieu-en-Jarrest France
Deklaracja, dotyczy produktu : Nazwa : Analizator sieci elektrycznych Typ : PECA 21
Odpowiada następującym normom i dyrektywom :
Dyrektywa 2014/30/UE EN 61326-1 : 2013
Dvrektywa niskonapieciowa 2014/35/UE

Dyrektywa niskonapięciowa 2014/35/UE EN 61010-1 : 2011

Soucieu-en-Jarrest, 30 marzec 2020

Jacques Huguet Podpis Prezesa

Harge

Przyrząd może być podłączony do niebezpiecznych napięć elektrycznych.

Musi być zamontowany, podłączony i zaimplementowany z poszanowaniem aktualnych regulacji przez wykwalifikowanego technika, przeszkolonego z zasad bezpieczeństwa, który przeczytał tę instrukcję.

To urządzenie może zostać zainstalowane w środowisku określonym w 2 stopniu zanieczyszczeń / Kategoria przepięć II (zgodnie z normą UE) bądź lepszym dla maksymalnej wysokości 2000m.

Przed instalacją bądź pracami naprawczymi, upewnij się że, źródło zasilania urządzenia jest odłączone.

Gdy urządzenie jest permanentnie podłączone do źródła

niebezpiecznego napięcia, niezbędnym jest dodanie sposobu wyłączenia źródła zasilania (przełącznik, bezpiecznik lub wyłącznik obwodu) w pobliżu produktu, dla łatwego dostępu i dla oznaczenia go jako sposobu odcięcia zasilania do urządzenia.

Ten sposób wyłączenia powinien odciąć wszystkie przewody prowadzące napięcie.

Dostępne części urządzenia to wszystkie porty komunikacji (µUSB lub RS485) i wyjścia analogowe.

Osoba która zaprojektowała system (elektryczna instalacja zawierająca urządzenie) jest w pełni odpowiedzialna za bezpieczeństwo i musi upewnić się, że został on zaprojektowany zgodnie z aktualnymi standardami bezpieczeństwa.

To urządzenie jest « Open Type Liste Process Control Equipment ». Aby zapobiec jakimkolwiek uszczerbkom zdrowotnym spowodowanym dostępem do części urządzenia pod napięciem musi ono zostać zainstalowane w szafie.

To urządzenie zawiera elektroniczne komponenty I nie powinno być wyrzucane wraz z odpadami domowymi. Powinno zostać zutylizowane zgodnie z WEEE (zużyty sprzęt elektroniczny I elektryczny), zgodnie z aktualnymi regulacjami.

OGÓLNE WARUNKI GWARANCJI

Warunki gwarancji i okres

To urządzenie posiada gwarancję przez okres 1 roku przed jakimikolwiek defektami spowodowanymi projektem lub wytworzeniem urządzenia, gdy funkcjonuje ono w normalnych warunkach.

Warunki interwencji *: Interwencje nie objęte gwarancją zostaną poddane akceptacji oszacowania naprawy. Klient pokryje koszty naprawy i zostaną one mu przywrócone po naprawie. Bez pisemnej zgody na oszacowanie naprawy w ciągu 30 dni produkty nie będą przechowywane,

* Pełne warunki gwarancji i szczegóły dostępne na żądanie.

1. INFORMACJE OGÓLNE

ANALIZATOR SIECI ELEKTRYCZNYCH

SIEĆ JEDNO/TRÓJFAZOWA SYMETRYCZNA / NIESYMETRYCZNA 3 LUB 4 PRZEWODOWA POMIAR RZECZYWISTEJ WARTOŚCI SKUTECZNEJ (TRUE RMS) PRZYSTOSOWANY DO SIECI ELEKTRYCZNYCH ZNIEKSZTAŁCONYCH

Analizatory PECA21 są specjalnie zaprojektowane do pomiaru, kontroli i transmisji wszystkich parametrów sieci elektrycznej zmiennej : napięcie, prąd, moc, energia, częstotliwość, itd....

Programowanie przez program na PC SlimSET przy pomocy standardowego kabla USB / µUSB lub przy pomocy klawiatury na płycie czołowej.

<u>Otoczenie</u>

Temperatura użytkowania : -10°C do +55°C Temperatura składowania : -25°C do +70°C

Znak: CE

Funkcjonalność

- Uniwersalny do wszystkich typów sieci elektrycznej..
 Mozliwość wyboru znamionowego wejścia przez programowanie Prąd : 1 lub 5 A AC
 - Napięcie : 60V L-N / 100V L-L
 - 110V l-n / 190V l-l
 - 250V l-n / 440V l-l
 - 350V l-n / 600V l-l
- Pomiar wysokiej jakości : pomiar ciągły bez przerw, użytkowanie w sieciach zniekształconych
- Czas cyklu pomiarowego : 20ms (dla 50Hz)
- Uniwersalne zasilanie pomocnicze

Dostępne opcje :

- 1,2 lub 3 wyjścia analogowe *
- > 1,2 lub 3 wyjścia przekaźnikowe *
- > Wyjście Ethernet (Modbus TCP)
- Analiza harmonicznych
- Wyjście Profinet
- * Tylko 2 wyjścia analogowe i / lub 2 wyjścia przekaźnikowe w wersji z wyjściem Profinet.

Sous réserve de modifications pour raisons techniques.

Gniazdo µUSB do programu Slimset

3. CHARAKTERYSTYKA

Wejścia

Napięcie	4 programowalne zakresy
	- 110V L-N / 190V L-L
	- 250V L-N / 440V L-L
	- 350V l-n / 600V l-l
<u>Prąd</u>	2 programowalne zakresy : 1A i 5 A AC
	z przełączaniem automatycznym zakresów
Przekroczenie mier:	zalne : 1,2 ln ; 1,2 Un
Przeciążalność :	ciągła : 750 V, 2 In
	chwilowa 10 s : 1000 V, 10 In
	chwilowa 0,5 s : 100 A
Pobór mocy :	wejście napięciowe : rezystancja 1,5MΩ
	wejście prądowe : <0,2 VA (łącznie z przekładnikiem prąd.)
Napięcie próby	3 kV / 50 Hz / 1 min. pomiędzy wejściami prądowymi
Częstotliwość	10… <u>50</u> …65 Hz (inne częstotliwości do uzgodnienia)
Typ sieci	jednofazowa, trójfazowa symetryczna lub niesymetryczna
	z lub bez zera

Wyjścia

<u>Wyjście RS485</u>

Тур	2 przewodowe z izolacją galwaniczną
Prędkość	4800 / 9600 / 19200 bodów
Protokół	Modbus/Jbus RTU 8 bitów parzystość programow.
Format danych	Całkowity 16 bitów (tabela jednostek) lub 32 bity
	przecinek i jednostka stałe

Wyjścia przekaźnikowe (opcja R, 2R lub 3R) *

Typ styku	załączalny z izolacją galwaniczną 3kV)
	Wyjście 1NO
Zdolność łączeniowa	5A – 250 VAC
 jako wyjście progowe 	
Ustawienie progu i histerezy	0 do 100% zakresu pomiarowego
Opóźnienie	0 do 999,9 s programowalne
 jako wyjście impulsow 	ve

- Częstotliwość 4 / 2 / 1 impulsy / sekundę programowana zależna od szerokości impulsu
- Szerokość impulsu 100 / 200 / 400ms programowana

Wyjścia analogowe (opcja A, 2A lub 3A) *

Sygnał wyjściowy: programowany z izolacją galwaniczną 1kV między wyjściami :

Wyjścia dwukierunkowe: Programowalne od -22 do +22 mA

0 do 100% zakresu pomiarowego programowane
do 500Ω (20mA)
< 0,1 % pełnego zakresu
16 bitów
< 25mVpp dla obciążenia 500Ω
60/80ms (wejście/wyjście)
< 100 ppm/°C

Wyjście Ethernet (opcja F)

Protokół : TCP/IP (Modbus) z izolacją galwaniczną Prędkośc 10 / 100M Przyłączenie RJ45

Analiza harmonicznych (opcja H)

Pomiar harmonicznych napięcia i prądu 3 faz prądu i napięcia do 50-tej. Retransmisja możliwa przez Modbus.

Wyjście Profinet (opcja PN)

Złącze żeńskie typu RJ45

Zasilanie

Zasilanie uniwersalne	20250 VAC / 21,5250 VDC			
Pobór mocy :	11 VA max. dla AC i 6W max. dla DC			

* dla wersji Profinet opcja 2R i 2A

Pomiar

Klasa dokładności	Napięcia, prądy : 0,2 Moce : klasa 0,5 Energia czynna : klasa1 Energia bierna : klasa1
Metoda pomiaru	szybkie jednoczesne próbkowanie 3 napięć i 3 prądów. Obliczenia cyfrowe na 32 bitach. Pomiar TRMS sygnałów zdeformowanych do 50-tej harmonicznej.
Filtracja cyfrowa Energie Czas cyklu	programowalna na kilku poziomach zapamiętywane 20ms (dla wszystkich typów sieci)

Zgodność z normami

Zabezpieczenie elektryczne	EN 61010-1
Klasa zabezpieczenia	II
	Podwójna izolacja, wejścia napięciowe
	zabezpieczone przez impedancję.
	Wejścia prądowe izolowane
	elektrycznie pomiędzy sobą.
Otoczenie i dokładność	IEC 61357-12
Dyrektywa CEM 2014/30/UE	EN 61326-1
Liczniki energii	IEC 62053-22
Stopień skażenia	2
Kategoria pomiaru	CAT III 300 VAC L-N
	CAT II 600 VAC L-N
Napięcie próby Wej./Wyj	3kVAC 50Hz 1min.

4. PODŁĄCZENIE

4.1 ZASILANIE :

4.2 WEJŚCIA POMIAROWE :

Sieć wejściowa (UL_1 , UL_2 , UL_3 , IL_1 , IL_2 , IL_3) może przenosić również znaczące zakłócenia i w ten sposób cały tok przetwarzania może być zakłócony. W celu zapobieżenia temu i polepszenia odporności na zakłócenia należy przestrzegać następujących reguł :

- Nie prowadzić w pobliżu siebie sieci wejściowej i przewodów zasilania pomocniczego aparatu.
- Nie prowadzić w pobliżu siebie sieci wejściowej i przewodów wyjściowych aparatu (wyjścia analogowego, impulsowego, przekaźnikowego, wyjścia cyfrowego).
- Dla wszystkich obwodów wyjściowych aparatu stosować kable ekranowane uziemione na obu końcach.

D2 D3 D4 C1 C2 C3 C4 C5 C6 D1 L1 Obciążenie Ν D3 D4 C2 C3 C4 C5 C6 **D1** D2 C1 \overline{m} \overline{m} L1 Obciążenie Ν

[SINGLE P] : Jednofazowa

Strona 8

[3W BAL] : Trrójfazowa symetryczna bez zera

[4W BAL] : Trójfazowa symetryczna z zerem

[3W 2I UN] : Trójfazowa 3-przewodowa niesymetryczna z pomiarem 2 prądów (IL3 nieprzyłączony)

[3W 2I UN] : Trófazowa 3-przewodowa niesymetryczna z pomiarem 2 prądów (IL2 nieprzyłączony)

[3W 3I UN] : Trójfazowa 3-przewodowa niesymetryczna bez zera (3 prądy)

D1 D2 D3 D4 C1 C2 C3 C4 C5 C6 L1 L2 L3 [4W UNBAL] : Trójfazowa niesymetryczna z zerem

4.3 WYJŚCIE CYFROWE RS485 :

- Rezystor końca linii Zo pozwala na zmniejszenie wpływu odbicia w liniach długich.

Dla prędkości <9600 bodów rezystor nie jest konieczny, od 1000m przy 9600 bd i 700m przy 19200 bd jest on wymagany.

- Należy używać kabli ekranowanych w celu zmniejszenia wpływu otoczenia. Podłącz uziemienie do obu końców kabla ekranowanego.
- W przypadku problemów z komunikacją: zmień polaryzację Rx i Tx na masterze. Sprawdź czy z urządzenia nadrzędnego przychodzi transmisja do urządzenia po kablu Tx.
- Jeśli to konieczne, podłącz rezystor końca linii Zo (120 ohm) przy EVA.
- UWAGA: zawsze polaryzować linię na poziomie mastera.

Uwaga :

Przy podłączeniu 2 przewodowym, urządzenie nadrzędne master musi mieć możliwość pracy w takim systemie. Działanie to jest wykonywane z poziomu programu, jeśli jest wybór 4 lub 2 przewodów, i/lub z poziomu interfejsu RS485, przy użyciu mikro-przełączników, które zatwierdzają emisję z sygnałem RTS (lub DTR).

4.4 WYJŚCIA ANALOGOWE : *

4.5 WYJŚCIA PRZEKAŹNIKOWE : *

* zgodnie z opcjami

5. PROGRAMOWANIE

• Przez klawiaturę na płycie czołowej

Zabezpieczenie programowaniua przy pomocy kodu.

• Przez program konfiguracyjny SlimSET

Do komunikacji pomiędzy PECA21, a PC potrzebny jest standardowy kabel połączeniowy (USB / µUSB). Podłącz gniazdo µUSB z boku obudowy, a następnie podłącz gniazdo USB do portu USB w komputerze. Program SlimSET pozwala na odczyt pomiarów i konfiguracji lub modyfikację konfiguracji aparatu.

Każda konfiguracja jest przechowywana w postaci plików zapisanych na dysku. Pliki te można przeglądać, modyfikować, kopiować lub ładować do konwerterów. Formularze można tworzyć z podłączonym konwerterem lub bez niego.

Oprogramowanie to umożliwia również tworzenie kopii zapasowych istniejących konfiguracji z urządzeń już eksploatowanych. Wydruk wszystkich plików jest możliwy na każdym typie drukarki.

Gniazdo µUSB do programu Slimset

Płyta czołowa

2 Klawiatury z 4 przyciskami

Klawiatura 1 :

- UIF: Wartości skuteczne napięć i prądów + pomiar częstotliwości
- $\mathbf{W} \, \boldsymbol{\phi}$: Wartości mocy i współczynnika mocy
- E : Liczniki energii.
- Ppg : Strona pomiarów programowanych (patrz strona 36)

Klawiatura 2 :

- → : Tryb oscyloskopu i wyświetlanie wektorów Fresnela.
- III. : Wyświetlacz słupkowy prądów i mocy.
- H : Wyświetlanie harmonicznych (bargraf i wartość w %).
- Diag : Wyświetlanie strony diagnostycznej i wartości lub stanów wyjść.

Klawiatura: Podstawy

Klawisz klucz

Odblokowanie klawiatury :

Symbol blokady klawiatury.

Po 30 sekundach bezczynności klawiatura w trybie pomiarowym blokuje się, aby zapobiec przedwczesnemu naciśnięciu. Aby go odblokować, po prostu naciśnij przycisk klucza przez 2 sekundy, aż pojawi się poniższy symbol : W trybie pomiarowym po odblokowaniu klawiatury klawisz Key ma 2 funkcje:

 Krótkie naciśnięcie zmienia typ pomiarów skojarzonych z klawiszami. diody LED informują, która klawiatura jest aktywna:

Funkcja oscyloskopu ,bargrafów, harmonicznych i diagnostyki.

2) Długie naciśnięcie > 2 sek. umożliwia wejście do menu konfiguracji urządzenia.

W trybie konfiguracji pasek symboli na ekranie pokazuje funkcje klawiszy :

: Umożliwia poruszanie się po menu rozwijanym lub zwiększanie i zmniejszanie wartości podczas wprowadzania.

: Służy do zatwierdzenia dostępu do wybranej opcji menu lub zatwierdzenia wybranej wartości.

: Pozwala wrócić do górnego menu

: Pozwala wrócić do menu głównego.

W trybie konfiguracji ekran jest podzielony na dwie części :

MAIN. ▶READ CFG INPUT ▶ INPUT NETWORK RANGE T. RATIO CUTOFF FUNCTION G+ M 41

Po prawej stronie menu, a po lewej ścieżkę prowadzącą do tej strony.

Ekran pomiarów

Opis :

Poruszanie się po menu :

* lub Profinet w zależności od opcji

Wprowadzenie wartości :

umożliwia powrót do starej wartości.

powrót do do menu głównego.

wprowadzeniu wartości, a nastepnie przecinka dziesiętnego, jednostka miga. .Następnie wybierz wartość wykładnika za pomocą strzałek w górę i w dół.

Menu MAIN

.

menu Symulacja : MAIN Istnieje możliwość symulacji działania wyjść analogowych i przekaźnikowych w celu sprawdzenia poprawności konfiguracji menu Simulation Symulacja OUT A3A4 Jeśli dostęp jest zablokowany kodem SIMUL MAIN SIMUL OUT A3A4 READ CFG CODE OUT A3A4 ┛ PROGRAM **OUT B5B6** Wprowadź wartość, 0000 00.00 SET CODE **OUT B7B8** która ma być wysłana mÄ **(**↓)` SIMULAT ℯ┛ na wyjście REL A7A8 FUNCTION **REL B1B2** SENS.KEY **REL B3B4** ABOUT ▲ ▼ → ⊡ M Symulacja przekaźnika A7A8 SIMUL SIMUL REL A7A8 OUT A3A4 **OUT 8586** REL OFF Wybór stanu przekaźnika **OUT B7B8** REL ON **→**) REL A7A8 Wizualizacja stanu REL B1B2 przekażników ∕.∎∎∎ **REL B3B4** M € ↓ ▼ ▲

Menu

Programowanie odcięcia cut-off dla prądu i napięcia w % wybranej kalibracji. Wartość,poniżej której pomiar zostanie ustawiony na zero.

Wybór filtracji cyfrowej. Zwiększ wartość, jeśli pomiary są niestabilne. W przypadku niestabilności pomiaru częstotliwości wybierz NR4 50HZ dla sieci 50Hz lub NR5 60HZ dla sieci 60Hz.

Wybór typu mierzonego urządzenia : odbiornik lub grnerator. Definiuje to kierunek przepłuwu prądu (obrót o 180°).

DELAYx

• Opóźnienie alarmu

Aktywny przy każdej zmianie stanu alarmowego. Ustawienie opóźnienia od 0 do 999,9 sek.

menu

RELAYS

* lub Profinet w zależności od opcji

Jedynie tryb programowanie

6. Lista komunikatów o błędach (Ecran Diag) :

cyjnych
namionowe
nionowy
<u> </u>
esem
e na magistrali sieciowej
le przywrócono

7. Adresowanie Modbus

1. FUNKCJE STANDARDOWE MODBUS (RTU)

Pomiary wykonywane przez aparat są dostępne :

- przez RS 485 ze standardową ramką Modbus,
- przez Ethernet (opcja F) na porcie « data » ze standardowymi ramkamimModbus i Modbus TCP.

W przypadku Modbus TCP numer urządzenia slave jest ustawiony na 1.

1.1 Modbus Funkcja 03 : odczyt N słów

Funkcja 3 : Odczyt N słów						
Numer Slave	Q	Adres 1-	Adres 1-go słowa Liczba słów		Suma kontrolna	
	3	Część starsza	Część młodsza	Część starsza	Część młodsza	CRC
DANE (6 bajtów)				CRC16 (2	2 bajty)	

	Odpowiedź								
			Wartość 1-go słowa			Wartość słowa		Suma	
Numer Slave	3	Liczba bajtów			słowa			1	N
Clare		(2xN)	Część starsza	Część mlodsza		Część starsza	Część mlodsza	CRC	CRC
	DANE (3+Nx2 bajty)						CR((2 ba	C16 ajty)	

1.2 Modbus Funkcja 16 : Zapis N słów

Funkcja 16 : Zapis Nsłów										
Numer Slave	16	Adres sło	s 1–go wa	Liczba (N	n słów I)	Liczba bajtów	Warte sło	ość N wa	Su konti	ma rolna
		Część starsza	Część mlodsz	Część starsza	Część mlods	(2211)	Część starsza	Część mlodsz	CRC	CRC
DATA (7+Nx2 bajtów)						CR (2 b	C16 ajty)			

Odpowiedź							
Numor		Adres 1-	-go słowa	Licz	ba (N)	Suma	kontr.
Slave	16	Część	Część	Część	Część	CRC	CRC
		starsza	młodsza	starsza	młodsza	••	••
DATA (6 bajtów)					CRC	16 (2	
				,		ba	<i>μty)</i>

1-3. Algorytm obliczania CRC16

- Uwaga 1 : \bigoplus = exclusif or
- Uwaga 2 : poly = A001h
- Uwaga 3 : obliczenie CRC16 obejmuje wszystkie bajty w ramce (oprócz CRC16)
- Uwaga 4 : WAŻNE dla CRC16, pierwszym wysyłanym bajtem jest część młodsza

Przykład :

Ramka 1 - 3 - 0 -75 - 0 - 2 - CRC16=180-29 (dziesiętnie)

2. FUNKCJE MODBUS TCP

2.1 Porównanie Modbus standard / Modbus TCP

Ramka Modbus jest złożona z następujących elementów :

Modbus standard :

Modbus TCP :

Nagłówek TCP DATA

Modbus TCP używa jedynie strefy danych Modbus standard (bez sumy kontrolnej – CRC) i dodaje specyficzny nagłówek. <u>Numer slave aparatu jest</u> stały 1.

2.2 Specyficzny nagłówek TCP :

Nagłówek jest złożony z 6 bajtów (0 do 5).

Bajt	Zawartość	Uwaga			
0	ld operacii	Zdefiniowany przez stacje odbiorcza (żadający)			
1	iu. operacji				
2	ld protokolu	Madhua TCD 0			
ი					
4	Szorokość romki	Wydiazania baity 6 na kaćay ramki			
5 Szerokosc ramki		wyliczenie bajtu 6 na końcu ramki			

3. ADRESY POMIARÓW

3-1 Formaty 2-1/4-3, 4-3/2-1, 1-2/3-4 lub 3-4/1-2

Wartość odczytana z tabeli 1 daje moduł pomiaru na 4 znaczących cyfrach. Aby znać jednostkę i położenie przecinka tego pomiaru, należy odczytać odpowiedni rejestr z tabeli 2.

Format pomiaru 2-1/4-3, 4-3/2-1, 1-2/3-4 lub 3-4/1-2	Adres	Jednostka pomiaru
1-U13 (napięcie międzyfazowe)	0	V, kV
2-U12 (napięcie międzyfazowe)	1	V, kV
3-U23 (napięcie międzyfazowe)	2	V, kV
4-IL1 (prąd fazy 1)	3	A, kA
5-IL2 (prąd fazy 2)	4	A, kA
6-IL3 (prąd fazy 3)	5	A, kA
7-Moc czynna całkowita	6	W,kW,MW
8-Moc bierna całkowita	7	Var,kVar,Mvar
9-Moc pozorna całkowita	8	VA,kVA,MVA
10-Częstotliwość	9	Hz
11-cos φ całkowity (współczynnik mocy : P/S)	10	-
12-Prąd upływu In	11	A
13-Energia czynna zużyta – mniej znaczące słowo	12	Wh,kWh,MWh,GWh
14- Energia czynna zużyta – bardziej znaczące słowo	13	Wh,kWh,MWh,GWh / 65536
15-Energia czynna oddana – mniej znaczące słowo	14	Wh,kWh,MWh,GWh

16- Energia czynna oddana – bardziej znaczące słowo	15	Wh,kWh,MWh,GWh / 65536
17-Energia bierna indukcyjna – mniej znaczące słowo	16	Varh,kVarh,MVarh,GVarh
18-Energia bierna indukcyjna – bardziej znacz. słowo	17	Varh,kVarh,MVarh,Gvarh / 65536
19-Energia bierna pojemnościowa – mniej znacz, słowo	18	Varh,kVarh,MVarh,GVarh
20-Energia bierna pojemnościowa – b. znacz. słowo	19	Varh,kVarh,MVarh,Gvarh / 65536
21-UL1 (napiecie fazowe 1)	20	V. kV
22-UL2 (napiecie fazowe 2)	21	V, kV
23-UL3 (napięcie fazowe 3)	22	V, kV
24-PL1 (moc czynna fazy 1)	23	W,kW,MW
25-PL2 (moc czynna fazy 2)	24	W,kW,MW
26-PL3 (moc czynna fazy 3)	25	W,kW,MW
27-QL1 (moc bierna fazy 1)	26	Var,kVar,Mvar
28-QL2 (moc bierna fazy 2)	27	Var,kVar,Mvar
29-QL3 (moc bierna fazy 3)	28	Var,kVar,Mvar
30-cosφL1 (współczynnik mocy fazy 1 : P /S)	29	-
31- cosφL2 (współczynnik mocy fazy 2 : P /S)	30	-
32- cosφL3 (współczynnik mocy fazy 3 : P /S)	31	-
33-Moc czynna średnia (10/15 min*)	32	W,kW,MW
34-Moc bierna średnia (10/15 min*)	33	Var,kVar,Mvar
35-Max mocy czynnej średniej (10/15 min*)	34	W,kW,MW
36-Max mocy biernej średniej (10/15min*)	35	Var,kVar,Mvar
37-Diagnostyka / błąd pomiarów	36	-
38-Tangens φ (opcia)	37	-
		1
52-SL1 (moc pozorna fazy 1)	51	VA,kVA,MVA
53-SL2 (moc pozorna fazy 2)	52	VA,kVA,MVA
54-SL3 (moc pozorna fazy 3)	53	VA,kVA,MVA

58- Wybrany pomiar n° 1	57	
59- Wybrany pomiar n° 2	58	-
69- Wybrany pomiar n° 12	68	-
125-Test pomiaru = 12345	124	-

*10/15min= czas całkowania pomiarów (patrz konfiguracja pomiarów)

<u>3-2 Adresy jednostek pomiarów</u> :

Jednostki i przecinek zależą tylko od zaprogramowanej przekładni prądowej i napięciowej. Nie zmienia się to podczas pracy, więc nie ma potrzeby ciągłego odczytu tej tabeli.

Przecinek i jednostka pomiaru	Adres	Przecinek / dostępne jednostki
1-Przecinek (4 bity starsze bajtu) / Jednostka (4 bity młodsze) U13	125	0,1,2,3 / 0,1
2-Przecinek (4 bity starsze bajtu) / Jednostka (4 bity młodsze) U12	126	0,1,2,3 / 0,1
3-Przecinek (4 bity starsze bajtu) / Jednostka (4 bity młodsze) U23	127	0,1,2,3 / 0,1
4-Przecinek (4 bity starsze bajtu) / Jednostka (4 bity młodsze) IL1	128	0,1,2,3 / 0,1
5-Przecinek (4 bity starsze bajtu) / Jednostka (4 bity młodsze) IL2	129	0,1,2,3 / 0,1
6-Przecinek (4 bity starsze bajtu) / Jednostka (4 bity młodsze) IL3	130	0,1,2,3 / 0,1
7-Przecinek (4 bity starsze bajtu) / Jednostka (4 bity młodsze) P	131	0,1,2,3 / 0,1,2
8-Przecinek (4 bity starsze bajtu) / Jednostka (4 bity młodsze) Q	132	0,1,2,3 / 0,1,2
9-Przecinek (4 bity starsze bajtu) / Jednostka (4 bity młodsze) S	133	0,1,2,3 / 0,1,2
10-Przecinek (4 bity starsze bajtu) / Jednostka (4 bity młodsze) f	134	2/0

11-Przecinek (4 bity starsze bajtu) /	135	3 / 0
12-Przecinek (4 bity starsze bajtu) /	136	0,1,2,3 / 0
13-Przec.(4 bity starsze bajtu) / Jedn.(4 bity młodsze) EA zużyta	137	0,1,2,3 / 0,1,2,3
	138	
15-Przec.(4 bity starsze bajtu)/ Jedn.(4 bity młodsze) EA oddana	139	0,1,2,3 / 0,1,2,3
16	140	_
17-Przec.(4 bity starsze bajtu) / Jedn.(4 bity młodsze) ER ind	141	0,1,2,3 / 0,1,2,3
18	142	-
19-Przec.(4 bity starsze bajtu) / Jedn.(4 bity młodsze) ER poj	143	0,1,2,3 / 0,1,2,3
20	144	-
21-Przecinek (4 bity starsze bajtu) / Jednostka (4 bity młodsze) UL1	145	0,1,2,3 / 0,1
22-Przecinek (4 bity starsze bajtu) / Jednostka (4 bity młodsze) UL2	146	0,1,2,3 / 0,1
23-Przecinek (4 bity starsze bajtu) / Jednostka (4 bity młodsze) UL3	147	0,1,2,3 / 0,1
24-Przecinek (4 bity starsze bajtu) / Jednostka (4 bity młodsze) PL1	148	0,1,2,3 / 0,1,2
25-Przecinek (4 bity starsze bajtu) / Jednostka (4 bity młodsze) PL2	149	0,1,2,3 / 0,1,2
26-Przecinek (4 bity starsze bajtu) / Jednostka (4 bity młodsze) PL3	150	0,1,2,3 / 0,1,2
27-Przecinek (4 bity starsze bajtu) / Jednostka (4 bity młodsze) QL1	151	0,1,2,3 / 0,1,2
28-Przecinek (4 bity starsze bajtu) / Jednostka (4 bity młodsze) QL2	152	0,1,2,3 / 0,1,2
29-Przecinek (4 bity starsze bajtu) / Jednostka (4 bity młodsze) QL3	153	0,1,2,3 / 0,1,2
30-Przecinek (4 bity starsze bajtu) / Jednostka (4 bity młodsze) cosφ L1	154	3/0
31-Przecinek (4 bity starsze bajtu) / Jednostka (4 bity młodsze) coso L2	155	3/0
32-Przecinek (4 bity starsze bajtu) /	156	3/0
33- Moc czynna średnia(N minut)	157	0,1,2,3 / 0,1,2

34- Moc bierna średnia(N minut)	158	0,1,2,3 / 0,1,2
35- Max Pśr.(N minut)	159	0,1,2,3 / 0,1,2
36-Max mocy biernej średniej (10/15min*)	160	0,1,2,3 / 0,1
37-Diagnostyka / błąd pomiarów	161	0 / 0
38 - tangens φ (opcja)	162	0,1,2,3 / 0,1
52-Przecinek (4 bity starsze bajtu) / Jednostka (4 bity młodsze) SL1	176	0,1,2,3 / 0,1,2
53-Przecinek (4 bity starsze bajtu) / Jednostka (4 bity młodsze faible) SL2	177	0,1,2,3 / 0,1,2
54-Przecinek (4 bity starsze bajtu) / Jednostka (4 bity młodsze) SL3	178	0,1,2,3 / 0,1,2
58-Przec.(4 bity star.bajtu) Jedn.(4 bity młodsze.) Wybrany pomiar n° 1	182	0,1,2,3 / 0,1
59-Przec.(4 bity star.bajtu) Jedn.(4 bity młodsze) Wybrany pomiar n° 2	183	0,1,2,3 / 0,1
69-Przec.(4 bity star.bajtu) Jedn.(4 bity młodsze) Wybrany pomiar n° 12	193	0,1,2,3 / 0,1
125-Przec.(4 bity star.bajtu) Jedn.(4 bity młodsze.) Test pomiaru (123,45 k)	249	2 / 1

1 / x = pomiar z rozdzielczością x 10 : przykład P = 2534 1 / 2 = 253,4 MW

0 / x = pomiar bez przecinka : przykład diagnostyka = 32 0 / 0 daje błąd N°32

przecinek : 0:xxxx. 1:xxx.x 2:xx.xx 3:x.xxxjednostka : 0:x1 1:kilo 2:Mega 3:Giga

Przykład : Przekładnia TC 5kA / 1A wyświetla 5.00kA Transmisja 5000 w tablicy pomiarów i 3/1 zgodnie z tabelą przecinka/jednostki.

3-3 Format 32 bitowy :

Jednostki i przecinki są ustalone, wszystkie pomiary są kodowane na 32 bitach (liczby podwójne całkowite)

Pomiar w format 32 bits	Adresse	Unités mesure
1-UL1 (napięcie fazy L1)	0	V
2-UL2 (napięcie fazy L2)	2	V
3-UL3 (napięcie fazy L3)	4	V
4-U12 (napięcie międzyfazowe)	6	V
5-U23 (napięcie międzyfazowe)	8	V
6-U31 (napięcie międzyfazowe)	10	V
7-IL1 (prąd fazy L1)	12	А
8-IL2 (prąd fazy L2)	14	А
9-IL3 (prąd fazy L3)	16	А
10-Moc czynna całkowita	18	W
11-Moc bierna całkowita	20	VAr
12-Moc pozorna całkowita	22	VA
13-cosφ całkowity (współczynnik	24	x100
mocy : P/S)		
14-Częstotliwość	26	Hz x10
15-Energia czynna zużyta (OUT)	28	kWh
16-Energia czynna oddana (IN)	30	kWh
17-Energia bierna indukcyjna	32	kVArh
18-Energia bierna pojemnościowa	34	kVArh
19-PL1 (Moc czynna fazy L1)	36	W
20-PL2 (Moc czynna fazy L2)	38	W
21-PL3 (Moc czynna fazy L3)	40	W
22-QL1 (Moc bierna fazy L1)	42	VAr
23-QL2 (Moc bierna fazy L2)	44	VAr
24-QL3 (Moc bierna fazy L3)	46	VAr
27- Prąd upływu In	52	Α
28-cosφL1 (współczynnik mocy fazy L1	54	x100
29-cosφL2 (współczynnik mocy fazy L2 P/S)	56	x100
30-cosφL3 (współczynnik mocy fazy L3)	58	x100
31-Moc czynna średnia (N minut*)	60	-

32-Moc bierna średnia (N minut*)	62	-
33-Max mocy czynnej średniej (N	64	-
minut*)		
34-Max mocy biernej średniej (N	66	-
minut*)		
35-Diagnostyka	68	-
36- tangens φ (opcja	70	x100
37-nieużywany	72	-
38- nieużywany	74	-
39- Wybrany pomiar n° 1	76	Mesure programmable 1
40- Wybrany pomiar n° 2	78	Mesure programmable 2
41- Wybrany pomiar n° 3	80	Mesure programmable 3
42- Wybrany pomiar n° 4	82	Mesure programmable 4
43- Wybrany pomiar n° 5	84	Mesure programmable 5
44- Wybrany pomiar n° 6	86	Mesure programmable 6
45- Wybrany pomiar n° 7	88	Mesure programmable 7
46- Wybrany pomiar n° 8	90	Mesure programmable 8
47- Wybrany pomiar n° 9	92	Mesure programmable 9
48- Wybrany pomiar n° 10	94	Mesure programmable 10
49- Wybrany pomiar n° 11	96	Mesure programmable 11
50- Wybrany pomiar n° 12	98	Mesure programmable 12
51-SL1 (moc pozorna fazy 1)	100	VA
52-SL2 ((moc pozorna fazy 2)	102	VA
53-SL3 ((moc pozorna fazy phase 3)	104	VA
62-Test pomiaru 123.45	124	Kx100

<u>3-4 Transmisja harmonicznych (opcja H)</u>

Harmoniczne są transmitowane w bajtach (8 bitów), niezależnie od wybranego formatu pomiaru

Rząd	1-szy bajt	Rząd	2bajt	Adres
THD	IL1	THD	UL1	500
THD	IL2	THD	UL2	501
THD	IL3	THD	UL3	502
IL1 H	3	Н	5	503
Н	7	Н	9	504
Н	11	Н	13	505
Н	15	Н	17	506
Н	19	Н	21	507
Н	23	Н	25	508
Н	27	Н	29	509
Н	31	Н	33	510
Н	35	Н	37	511
Н	39	Н	41	512
Н	43	Н	45	513
Н	47	Н	49	514
UL1 H	3	Н	5	515
Н	7	Н	9	516
Н	11	Н	13	517
Н	15	Н	17	518
Н	19	Н	21	519
Н	23	Н	25	520
Н	27	Н	29	521
Н	31	Н	33	522
Н	35	Н	37	523
Н	39	Н	41	524
Н	43	Н	45	525
Н	47	Н	49	526
IL2 H	3	Н	5	527
Н	7	Н	9	528
Н	11	Н	13	529
H	15	Н	17	530
H	19	H	21	531
H	23	H	25	532
H	27	Н	29	533
H	31	Н	33	534
H	35	H	37	535

Н	39	H 41	536
Н	43	H 45	537
Н	47	H 49	538
UL2 H	3	H 5	539
Н	7	H 9	540
Н	11	H 13	541
Н	15	H 17	542
Н	19	H 21	543
Н	23	H 25	544
Н	27	H 29	545
Н	31	H 33	546
Н	35	H 37	547
Н	39	H 41	548
Н	43	H 45	549
Н	47	H 49	550
IL3 H	3	H 5	551
Н	7	H 9	552
Н	11	H 13	553
Н	15	H 17	554
Н	19	H 21	555
Н	23	H 25	556
Н	27	H 29	557
Н	31	H 33	558
Н	35	H 37	559
Н	39	H 41	560
Н	43	H 45	561
Н	47	H 49	562
UL3 H	3	H 5	563
Н	7	H 9	564
Н	11	H 13	565
Н	15	H 17	566
Н	19	H 21	567
Н	23	H 25	568
Н	27	H 29	569
Н	31	H 33	570
Н	35	H 37	571
Н	39	H 41	572
Н	43	H 45	573
Н	47	H 49	574

Przykład :

PECA Nr 10 dla IL1: 3 harmoniczna 10%, 5 harmoniczna 5%, 7 harmoniczna 3%, i 9 harmoniczna 0%, 2 słowa są odczytywane z adresu 503: Zapytanie : 10-3-1-247-0-2-CRC16 Odpowiedź : 10-3-4-10-5-3-0-CRC16 **3-5. Format pomiarów**

Le format des mesures retransmises par la sortie numérique dépend de la programmation réalisée :

■ Format 2 – 1 / 4 – 3 Ramka zapytania o pomiar EA OUT z PECA N°10 : 10-3-0-12-0-2-CRC16 Odpowiedź APARATU : 10-3-4-bajt2-bajt1-bajt4-bajt3-CRC16 EA OUT= bajt1 + bajt2 x 256 + bajt3 x 256² + bajt4 x 256³

Ramka zapytania o pomiar częstotliwości z PECA N°10 : 10-3-0-9-0-1-CRC16 Odpowiedź APARATU:10-3-2- bajt2-bajt1 -CRC16 CZĘSTOTLIWOŚĆ = bajt1 + bajt2 x 256

■ Format 4-3 / 2-1Ramka zapytania o pomiar EA OUT z PECA N°10 : 10-3-0-12-0-2-CRC16 Odpowiedź APARATU : 10-3-4-bajt4-bajt3-bajt2-bajt1-CRC16 EA OUT= bajt1 + bajt2 x 256 + bajt3 x 256² + bajt4 x 256³

Ramka zapytania o pomiar częstotliwości z PECA N°10 : 10-3-0-9-0-1-CRC16 Odpowiedź APARATU : 10-3-2-bajt2-bajt1 -CRC16 CZĘSTOTLIWOŚĆ = bajt1 + bajt2 x 256

■ Format 1-2 / 3-4Ramka zapytania o pomiar EA OUT z PECA N°10 : 10-3-0-12-0-2-CRC16 Odpowiedź APARATU:10-3-4-bajt1-bajt2-bajt3-bajt4-CRC16 EA OUT= bajt1 + bajt2 x 256 + bajt3 x 256² + bajt4 x 256³

Ramka zapytania o pomiar częstotliwości z PECA N°10 : 10-3-0-9-0-1-CRC16

Odpowiedź APARATU:10-3-2-bajt1-bajt2 -CRC16 CZĘSTOTLIWOŚĆ = bajt1 + bajt2 x 256

Format 3-4 / 1-2Ramka zapytania o pomiar EA OUT z PECA N°10 : 10-3-0-12-0-2-CRC16 Odpowiedź APARATU:10-3-4-bajt3-bajt4-bajt1-bajt2-CRC16 EA OUT= bajt1 + bajt2 x 256 + bajt3 x 256² + bajt4 x 256³

Ramka zapytania o pomiar częstotliwości z PECA N°10 : 10-3-0-9-0-1-CRC16 Odpowiedź APARATU:10-3-2-bajt1-bajt2 -CRC16 CZĘSTOTLIWOŚĆ = bajt1 + bajt2 x 256

L'énergie est transmise avec la même unité que les puissances totales. Pour les harmoniques, la valeur de l'harmonique est codée en % sous la forme d'un entier compris entre 0 et 100

■ Format 32 bitowy Ramka zapytania o pomiar EA OUT z PECA N°10 : 10-3-0-28-0-2-CRC16 Odpowiedź APARATU:10-3-4-bajt2-bajt1-bajt4-bajt3-CRC16 EA OUT= bajt1 + bajt2 x 256 + bajt3 x 256² + bajt4 x 256³

Ramka zapytania o pomiar częstotliwości z PECA N°10 : 10-3-0-26-0-2-CRC16 Odpowiedź APARATU:10-3-4- bajt2-bajt1-bajt4-bajt3-CRC16 CZĘSTOTLIWOŚĆ = bajt1 + bajt2 x 256 + bajt3 x 256² + bajt4 x 256³

W tym formacie przecinki i jednostki są ustalone, nie ma tutaj drugiej tabeli do odczytu. Jak można zobaczyć w tabeli 7.3.2, częstotliwość przesyłana jest w Hz z 1 cyfrą po przecinku: odczytana wartość = 500 dla 50.0Hz.

Pomiary są na 32 bitach zamiast 16 w innych formatach (za wyjątkiem energii, które są zawsze na 32 bitach), powoduje to jednak wydłużenie sekwencji.

3.6. Zerowanie liczników energii

Używając MODBUS wszystkie liczniki energii mogą być zerowane : Należy zapisać wartość całkowitą 8481 do adresu 1080

8. Znaczenie różnych liczników energii

9.Szczególny przypadek współczynnika mocy (cosφ)

Możliwa jest retransmisja współczynnika mocy na wyjściu analogowym na 3 różne sposoby :

■ <u>COSINUS MATEMATYCZNY</u>:

znak wskazuje na kierunek prądu (odbiornik / generator)

Przykład: obciążenie może pobierać albo generować prąd, cosinus między –0.5 i +0.5 przypisany jest na wyjście 4-20mA

COSINUS ELEKTRYCZNY Z CENTRUM 0 :

Znak cosinusa pokazuje charakter obciążenia (pojemnościowe lub indukcyjne)

Przykład: Pomiar sieci kompensowanej przez baterię kondensatorów.

Charakter obciążenia jest indukcyjny, lecz jeśli kompensacja będzie za duża może być pojemnościowy. Cosinus oscyluje wokół +/-1. Wyjście 4-20mA zaprogramowano dla cos między -1 a +1.

Cosinus oscyluje wokół +/-1, prąd na wyjściu skacze od 4 do 20mA.

Nie można użyć miernika wskazówkowego, ale funkcja linearyzacji umożliwia użycie miernika cyfrowego na wyjściu prądowym.

Aby uniknąć skoków z 4 na 20mA, użyj następującej konfiguracji :

■ <u>COSINUS ELEKTRYCZNY Z CENTRUM +/-1 :</u>

Znak cosinusa zawsze wskazuje na charakter obciążenia (pojemność lub indukcja, lecz wyjście prądowe ma środek dla cosinusa +/-1).

Przykład : biorąc poprzedni przykład, wyjście 4-20mA programujemy dla cosinusa od –0.5 do +0,5

Kiedy cosinus oscyluje między +/-1, wyjście prądowe pozostaje w okolicy 12mA. Nieliniowa funkcja nie pozwala na użycie miernika cyfrowego, ale można użyć wskaźnik analogowy

10. Aneks : Profinet

Pierwsza instalacja jest dostarczona w pliku GSD: GSDML – V2.0-PECA21MP-PNIO-20150710.xml

Informacja PROFINET jest zorganizowana następująco :

Informacja wejściowa :

W zależności od konfiguracji wybranej przy użyciu dostarczonego pliku GSD, komunikaty wejściowe mogą być : (patrz tabele pstrona 40/41)

Format pomiarów (kolejnośc słów) jest programowana dla PECA21 przy pomocy programu SlimSET.